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Overview

The GLAM2 software aims to find the strongest motif that is present in a set
of protein or nucleotide sequences. In fact, it can analyze sequences over any
user-specified alphabet. The method is described here in three stages: firstly,
what exactly is meant by a “motif”, secondly, what is meant by “strongest”, and
finally, the algorithm used to search the space of motifs for the strongest one.
Most aspects of the method have close analogs in the well known Gibbs Sampling
technique for motif discovery [8, 9, 5]: GLAM2 is essentially a generalization of
Gibbs Sampling to allow insertions and deletions in a fully general fashion.

Having found a motif, we often wish to scan it against a database of se-
quences, to find other instances of the motif. GLAM2 includes such a scanning
method, which is also described here.

Motif Definition

A motif in GLAM2 has a certain number, W , of “key positions”. The idea is that
the key positions hold residues that are important for the motif’s function. An
instance of the motif is a string of residues (amino acids or nucleotides), where
each residue either occupies one of the key positions, or is inserted between key
positions. More than one residue may be inserted between key positions, and
a key position may lack a corresponding residue, meaning that it is deleted in
this motif instance.

What GLAM2 searches for is an alignment of substrings of the input se-
quences to a series of key positions. The number of key positions is optimized
by the algorithm. Currently, each input sequence may contribute at most one
substring to the alignment, although this restriction could be relaxed in princi-
ple. GLAM2 requires the alignment to contain at least some minimum number
of substrings, by default 2. This lower limit is a useful generalization of the
OOPS (one occurrence per sequence) and ZOOPS (zero or one occurrence per
sequence) modes of previous motif discovery algorithms [2]. For nucleotide se-
quences, there is an option to consider both strands of the input sequences
(direct and reverse-complement).
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Scoring Scheme

Overview

In order to define the “strongest” motif (i.e. alignment of substrings to key
positions), GLAM2 uses a formula to assign a numeric score to any given align-
ment. The task, then, is to find the alignment with maximum score. While the
precise formula is given below, some desirable characteristics for any sensible
formula are noted here. Firstly, the formula should favour alignments where
key positions are occupied by identical or chemically similar residues. Secondly,
deletions and insertions should be penalized in general. Thirdly, deletions and
insertions should be penalized less strongly when they are concentrated in a
few positions in the alignment, suggesting that those positions in the motif are
more prone to deletion or insertion, than when they are scattered across many
positions. The formula used by GLAM2 and described below has each of these
characteristics.

Motif Model

The formula is motivated by a simple statistical model of a motif, with position-
specific residue probabilities, position-specific deletion probabilities, and position-
specific insertion probabilities. Thus, each key position has characteristic prob-
abilities, θi, of containing the ith residue type. (1 ≤ i ≤ A, where A is the size
of the alphabet, 20 for proteins and 4 for nucleotides.) Also, each key position
has probability φ of being deleted. Finally, the probability that x residues are
inserted between two key positions is ψx(1 − ψ). The use of a geometric distri-
bution for insertion length is arbitrary, but it is the simplest choice, and since
ψ may vary with position, we doubt that more complex schemes would lead to
much benefit. This model can be regarded as a hidden Markov model, where θi

are emission probabilities and φ and ψ are transition probabilities.
Hence, in a set of s independent motif instances, the probability that a key

position is deleted in a particular subset of d instances and present in the other
m = s − d instances is:

φd(1 − φ)m (1)

The probability that r residues in total (in all instances) are inserted between
two key positions is:

ψr(1 − ψ)s (2)

The probability of observing particular residues in one key position, where ci is
the count of the ith residue type (so m =

∑A
i=1 ci), is:

A
∏

i=1

θci

i (3)
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Motif Priors

The values of θi, φ, and ψ are, of course, unknown, but prior probability dis-
tributions are assigned to these parameters. Then, total probabilities can be
obtained by integrating over the parameter values. The total probability of
observing d deletions is:

∫ 1

0

φd(1 − φ)m
· prior(φ)dφ (4)

The total probability of observing r insertions is:

∫ 1

0

ψr(1 − ψ)s
· prior(ψ)dψ (5)

The total probability of observing ~c residue counts is:

∫ A
∏

i=1

θci

i · prior(~θ)d~θ (6)

The prior distributions of φ and ψ are assumed to be Beta distributions (the
simplest kind of Dirichlet distribution):

prior(φ) = φD−1(1 − φ)E−1/Z (7)

prior(ψ) = ψI−1(1 − ψ)J−1/Z ′ (8)

The values of D, E, I, and J are chosen so as to give GLAM2 the desired level
of aversion to deletions and insertions. For reasons that will become clearer
in the description of the search algorithm, these parameters are referred to as
pseudocounts: D is the deletion pseudocount, E is the no-deletion (or match)
pseudocount, I is the insertion pseudocount, and J is the no-insertion pseudo-
count. Z and Z ′ are normalization constants. The use of Beta distributions
here is ultimately arbitrary, but they are a natural choice since they are conju-
gate priors of the binomial distributions for deletion and insertion probabilities,
and they allow the integrals to be solved analytically. Also, the shapes of these
distributions allow considerable flexibility by varying the pseudocount values.

The prior distribution of ~θ should incorporate prior knowledge of the func-
tional similarities between residues, at least in the case of proteins. To accom-
plish this, a Dirichlet mixture distribution is used (a weighted sum of Dirichlet
distributions):

prior(~θ) =
C

∑

j=1

wj

Zj

A
∏

i=1

θ
αji−1
i (9)

C is the number of components in the mixture, wj is the weight of the jth

component, Zj is the normalization constant of the jth component, and αji is
the jth component’s pseudocount for the ith residue type. So, this distribution
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has a potentially huge number of parameters, which should be exquisitely chosen
so as to favour biologically realistic values of ~θ. Fortunately, Dirichlet mixture
priors for proteins have been extensively investigated by a team at UC Santa
Cruz, and we simply use their parameters [11]. For the case of nucleotides, we
use a one-component mixture with all pseudocounts = 0.4 [5]. These are the
defaults: alternative Dirichlet mixture parameters may be supplied as input to
GLAM2.

As far as we can tell, previous implementations of Gibbs Sampling have only
used simple Dirichlet priors rather than Dirichlet mixtures, hence have lacked
prior information about functional similarities between amino acids. This ought
to give GLAM2 a significant advantage in finding protein motifs, even leaving
aside the treatment of insertions and deletions.

Using these prior distributions, the total probability integrals can be solved
analytically. The solutions contain Gamma functions, denoted by Γ(·). The
total probability of observing d deletions becomes:

Γ(D + E)Γ(d + D)Γ(m + E)

Γ(s + D + E)Γ(D)Γ(E)
(10)

The total probability of observing r insertions becomes:

Γ(I + J)Γ(r + I)Γ(s + J)

Γ(r + s + I + J)Γ(I)Γ(J)
(11)

The total probability of observing ~c residue counts becomes:

C
∑

j=1

wj · Γ(Aj)

Γ(m + Aj)

A
∏

i=1

Γ(ci + αji)

Γ(αji)
(12)

where Aj =
∑A

i=1 αji.

Background Model

To score alignments, the motif model is compared to a background model of
independent sequences. The background model is that the residues occur ran-
domly and independently, with probabilities pi. For the nucleotide alphabet,
the default is pi = 1/4. For the protein alphabet, the amino acid abundances
of Robinson and Robinson, which are frequently cited in publications on NCBI
BLAST, are used [10, 1]. These probabilities can be adjusted by the user.
Thus, the probability of observing ~c residue counts in one key position given the
background model is:

A
∏

i=1

pci

i (13)

In the motif model, residues inserted between key positions are assumed to occur
with these same background frequencies.
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The Formula

The score S of an alignment X is: the likelihood of the alignment given the
motif model, divided by the likelihood of the substrings in the alignment given
the background model.

S(X) =
W
∏

k=1

C
∑

j=1

wj · Γ(Aj)

Γ(mk + Aj)

A
∏

i=1

Γ(cki + αji)

Γ(αji) · p
cki

i

×

W
∏

k=1

Γ(D + E)Γ(dk + D)Γ(mk + E)

Γ(s + D + E)Γ(D)Γ(E)
×

W−1
∏

k=1

Γ(I + J)Γ(rk + I)Γ(s + J)

Γ(rk + s + I + J)Γ(I)Γ(J)

(14)

where dk is the number of deletions of the kth key position, mk is the number
of residues in the kth key position, cki is the count of the ith residue type in the
kth key position, and rk is the number of insertions between key positions k and
k + 1. Since scores calculated by this formula can easily be of unwieldy orders
of magnitude, GLAM2 actually reports log2 S(X).

Fitting the Insertion and Deletion Priors

It is desirable to choose the insertion and deletion pseudocounts, D, E, I, and J ,
so as to maximise the model’s fit to actual alignments. Suppose we are given a
training set of alignments, with a total of WD key positions, and WI potential
insertion sites between key positions. We seek the values of D, E, I, and J that
maximise the total probabilities:

arg max
D,E

WD
∏

k=1

Γ(D + E)Γ(dk + D)Γ(mk + E)

Γ(sk + D + E)Γ(D)Γ(E)
(15)

arg max
I,J

WI
∏

k=1

Γ(I + J)Γ(rk + I)Γ(sk + J)

Γ(rk + sk + I + J)Γ(I)Γ(J)
(16)

This can be accomplished, crudely but effectively, by plotting the function over
a two-dimensional grid of values for D and E (or I and J). In every case that
we examined, the plot indicates a simple hill-shaped function with a unique
maximum.

Search Algorithm

Overview

The preceding sections have defined what is meant by a motif: an alignment
of substrings of the input sequences to a series of key positions, and have sug-
gested a formula to assign a score to any such alignment. The aim is to find
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the alignment(s) with maximum score. Unfortunately, the number of possible
alignments will be astronomically huge in most cases, and we do not know a
practical algorithm to guarantee finding the highest-scoring one. Therefore it is
necessary to use a heuristic algorithm.

GLAM2 uses simulated annealing, a very general technique for finding the
highest-scoring solution in a large “search space” of possible solutions. Simu-
lated annealing begins at some (presumably non-optimal) location in the search
space, and repeatedly performs stochastic moves to “nearby” locations. Moves
that increase the score are favoured, but moves that decrease the score are also
permitted, which allows the algorithm to escape from local maxima. A tem-
perature parameter, T , controls the preference for higher scores: at low tem-
peratures they are strongly preferred, but at high temperatures they are only
weakly preferred. More precisely, the stochastic moves in simulated annealing
should satisfy the so-called detailed balance condition:

S(X)1/T P (X → Y ) = S(Y )1/T P (Y → X) (17)

where X and Y indicate locations in the search space, S(X) is the score of
location X, and P (X → Y ) is the probability, when in location X, of moving
to location Y . Note that detailed balance implies reversibility: if it is possible
to move from X to Y , then it must be possible to move from Y to X. The
temperature starts out high and is gradually reduced, giving the process a chance
to evade local maxima and settle into the global maximum.

The stochastic moves can be generated in many different ways that sat-
isfy detailed balance: generating them in a way that explores the search space
effectively is key to a successful algorithm. For example, some previous multi-
ple alignment algorithms have employed simulated annealing with simple moves
that adjust the position of a gap in one of the aligned sequences [6, 7]. Thus, each
move explores just one location in the vast search space, and many such moves
may separate a local optimum from the global optimum. In contrast, GLAM2
uses an extremely clever technique, the stochastic traceback [4, 3], which allows
a single move to explore efficiently an astronomically large number of alignments
(albeit an astronomically small fraction of the total search space).

Moves using the stochastic traceback alone are prone to getting stuck in a
certain type of local optimum; so GLAM2 intersperses these with a second type
of move. The stochastic traceback moves are referred to as site sampling, and
the second type as column sampling, because they are analogous to procedures
with the same names in the original Gibbs sampler [9]. At each iteration, one
type of move is chosen randomly with 50:50 probabilities. A modification of
column sampling allows the number of key positions in the motif to be varied.
Together, these moves can explore the space of all possible motifs.

To assess the robustness of the result, GLAM2 performs several (by default
10) annealing runs from different random starting points. Each run continues
until some number of iterations n has passed without finding a higher-scoring
alignment. During each run, T is reduced by a fixed percentage at each iteration,
by default starting at 1.2 and decreasing 1.44-fold per n iterations. The highest-
scoring alignment encountered in each run is reported at the end.
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Site Sampling

Overview

In site sampling, one of the input sequences is chosen at random and re-aligned
to the motif. All possible alignments of substrings of this sequence to the motif
are considered, including the option of excluding this sequence from the align-
ment altogether. However, if excluding the sequence would bring the number of
substrings in the alignment below the minimum permitted number (see above),
then exclusion is not considered. Both strands of the sequence are considered,
if the user selected this option. One alignment is chosen at random, with prob-
ability proportional to the resulting alignment score, as defined above, raised to
the power of 1/T .

Scoring

The calculations can be simplified somewhat by dividing by a constant factor:
the score of the alignment of all the other sequences, excluding the sequence that
is being re-aligned. (This also scales the values to moderate orders of magnitude
that are likely to be representable by the computer.) In the following, primed
letters refer to this alignment of all the other sequences: s′ is the number of
substrings in the alignment, m′

k is the number of residues aligned to key position
k, d′k is the number of deletions of key position k, r′k is the number of insertions
between k and k + 1, and c′ki is the count of residue type i in position k.

Using the fact that Γ(x) = (x−1)Γ(x−1), the score for deleting key position
k (cf. Equation 10) becomes:

δ(k) =
d′k + D

s′ + D + E
(18)

The score for inserting x residues between k and k+1 (cf. Equation 11) becomes:

ι(k, x) =
s′ + J

r′k + s′ + I + J
·

x−1
∏

i=0

r′k + I + i

r′k + s′ + I + J + i + 1
(19)

The score for aligning a residue of type X with key position k (cf. Equation 12)
becomes:

µ(k,X) =
m′

k + E

s′ + D + E
·

C
∑

j=1

vkj
c′kX + αjX

m′

k + Aj

/

pX (20)

where:

vkj =

wj ·Γ(Aj)
Γ(m′

k
+Aj)

∏A
i=1

Γ(c′ki+αji)
Γ(αji)

∑C
j=1

wj ·Γ(Aj)
Γ(m′

k
+Aj)

∏A
i=1

Γ(c′
ki

+αji)

Γ(αji)

(21)

(Hence D, E, I, and J are called pseudocounts, because they get added to the
observed counts: d′k, m′

k, r′k, and s′.)
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Dynamic Programming

To set up the stochastic traceback, GLAM2 calculates values M(i, j): the sum
of the scores of all alignments ending at the ith key position in the motif and
the jth residue in the sequence. The calculation is made slightly simpler by
constructing intermediate values N(i, j). The quantities µ, δ, and ι are raised
to the power of 1/T prior to using them in this procedure. In the following, L
is the length of the sequence. Boundary cases:

N(0, j) = 1 (0 ≤ j ≤ L) (22)

M(i, 0) = δ(i) · N(i − 1, 0) (1 ≤ i ≤ W ) (23)

Main cases:

M(i, j) = µ(i,Xj) · N(i − 1, j − 1) + δ(i) · N(i − 1, j)

(

1 ≤ j ≤ L
1 ≤ i ≤ W

)

(24)

N(i, j) =

j
∑

x=0

ι(i, x) · M(i, j − x)

(

0 ≤ j ≤ L
1 ≤ i < W

)

(25)

This procedure is similar to the standard algorithms for pair-wise sequence
alignment, but much slower: the summation in Equation (25) causes the whole
calculation to require O(WL2) operations rather than O(WL) operations. Ways
to speed up the calculation are described below.

Stochastic Traceback

The values M(i, j) are used to pick a random alignment, with probabilities

proportional to their scores to the power of 1/T . Note that
∑L

j=0 M(W, j) is the
sum of the scores of all alignments of the sequence to the motif. If both strands
are being considered, a second matrix MR(i, j) is constructed using the reverse
complement of the sequence. GLAM2 randomly decides to align the sequence
on the forward strand, the reverse stand, or not at all, with probabilities in
the ratio

∑L
j=0 M(W, j) :

∑L
j=0 MR(W, j) : 1. Supposing the forward strand

is chosen, the endpoint of the alignment in the sequence, 0 ≤ j ≤ L, is then
picked randomly, with probabilities proportional to M(W, j).

Having chosen the endpoint j, the alignment is determined by iterating the
following steps, with i initially equal to W . Firstly, GLAM2 randomly chooses to
either align residue j to key position i, or delete key position i, with probabilities
defined in Equations (26) and (27). Then i is decremented, and unless deletion
was chosen, j is decremented. Secondly, GLAM2 randomly picks a number of
residues, 0 ≤ x ≤ j, to insert between key positions i and i+1, with probabilities
given in Equation (28). x is then subtracted from j. These steps are repeated
until i or j reaches zero.

prob(match) = µ(i,Xj) · N(i − 1, j − 1) / M(i, j) (26)

prob(delete) = δ(i) · N(i − 1, j) / M(i, j) (27)

prob(insert x residues) = ι(i, x) · M(i, j − x) / N(i, j) (28)
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The traceback can be performed in O(W + L) operations.

Faster Algorithms

GLAM2 provides two options to speed up the dynamic programming procedure.
The first option, noting that Equation (25) is a convolution, is to calculate it in
O(L log L) operations using fast Fourier transforms. Thus, the whole dynamic
programming procedure requires O(WL log L) operations. A potential disad-
vantage is loss of accuracy for smaller values of N(i, j). The values of M(i, j)
and N(i, j) (for fixed i) may differ by many orders of magnitude; since the
Fourier transform mixes these values, the smaller ones become corrupted owing
to limited precision of the computer’s representation of real numbers. Unfortu-
nately, in some cases these smaller values of N(i, j) have large effects at later
stages of the dynamic programming.

The second option is to replace the residue insertion score, ι(k, x), with a
more convenient approximation:

ι(k, x) = ι1(k) · ι2(k)x (29)

where:

ι1(k) =
s′ + J

r′k + s′ + I + J
(30)

ι2(k) =
r′k + I

r′k + s′ + I + J
(31)

Here, ι2 and ι1 are the posterior mean estimators for ψ and 1 − ψ. With this
change, N(i, j) can be built up as follows:

N(i, 0) = ι1(i) · M(i, 0) (32)

N(i, j) = ι1(i) · M(i, j) + ι2(i) · N(i, j − 1) (33)

Thus, the whole dynamic programming procedure requires O(WL) operations.
This is the default algorithm for GLAM2. It is remarkable that this algo-
rithm samples from all gapped alignments using the same number of operations,
O(WL), as the site sampling step of the original Gibbs sampler [8], which only
considers ungapped alignments. The change to ι(k, x) introduces a slight de-
viation from detailed balance, penalizing long insertions, but seems to produce
sensible alignments in practice.

Numerical Considerations

The values of M(i, j) and N(i, j) can become too large or too small to be
represented by the computer using floating point. A rescaling procedure is
employed to mitigate this problem. After calculating N(i − 1, j) for all j, and
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before calculating M(i, j), GLAM2 rescales µ(i,X) and δ(i) as follows:

µ(i,X) ←
µ(i,X)

maxL
j=0 N(i − 1, j)

(34)

δ(i) ←
δ(i)

maxL
j=0 N(i − 1, j)

(35)

The product of the rescale values, R, is recorded (in log space to avoid overflow):

R =
W
∏

i=1

L
max
j=0

N(i − 1, j) (36)

In the stochastic traceback, the sum of alignment scores
∑L

j=0 M(W, j) needs
to multiplied by R, and similarly for MR, before picking the strand. Note
that this method is simpler than rescaling procedures that have been described
elsewhere [3]: there is no need to record an array of rescaling parameters, and
the traceback, after picking the strand, works properly without change.

This rescaling keeps the maximum values of M(i, j) and N(i, j) to manage-
able orders of magnitude, but the minimum values may still underflow. These
small values “usually” correspond to extremely improbable alignments, but in
slightly pathological cases they can be the seeds of highly probable alignments.
GLAM2 attempts to warn when this occurs, by checking whether the traceback
passes through values of N(i, j) below the limit of accurately represented num-
bers (DBL MIN). As noted above, the fast Fourier transform algorithm entails
a more severe loss of accuracy for small values: in this case, the warning is trig-
gered at values below DBL EPSILON. In addition, illegitimate negative values
of N(i, j) emerging from the fast Fourier transform are immediately reset to
zero.

Finally, problems can occur with low values of T . For instance, an entire
row of N(i, j) values (all j for some i) can underflow to zero. To avoid this, a
lower bound is imposed on T , by default 0.1.

Column Sampling

Motivation

Site sampling alone finds high-scoring alignments, but often with non-optimal
distribution of the key positions. For example, there might be a key position
that is deleted in all substrings, while further along the alignment there is a
column of inserted residues that are all identical. In this case, the score would
increase if all the letters between these two columns were shifted across by one
position, so that the identical residues become aligned to a key position, and
the deletions disappear. Unfortunately, site sampling moves can only shift the
letters of one substring at a time, which is likely to decrease the score. So
low-scoring intermediate alignments must be traversed in order to reach the
improved alignment. Column sampling moves solve this difficulty by providing
a more direct route to the improved alignment.
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Overview

Column sampling has two steps. In the first step, one key position is chosen
at random, and removed from the alignment. In the second step, a new key
position is added to the alignment. These steps can be viewed as moving a key
position from one location to another in the alignment.

Removal of a key position has the following effect. If an internal key posi-
tion (neither the leftmost nor the rightmost) is removed, the residues that were
aligned to it become insertions between the preceding and following key posi-
tions. If the leftmost or rightmost key position is chosen, the residues that were
aligned to it cease to be part of the alignment.

In general, the number of ways of adding a key position to an alignment
is vast, and the addition step needs to be restricted to a manageable subset
of these. Furthermore, this subset should be chosen in a way that ensures
reversibility and detailed balance of column sampling moves. To achieve this,
some properties of the key position that was removed need to be preserved.

Details

Before removing a key position, the following information is recorded about it:
whether it is deleted or matched in each substring, and the number of insertions
in each substring between this key position and the one to either the left or the
right. The direction, left or right, is chosen randomly with 50:50 probability
before choosing the key position. When the direction is “left”, the leftmost key
position is never chosen, and when the direction is “right”, the rightmost key
position is never chosen. This procedure requires that there are at least two key
positions.

After removing the key position, GLAM2 considers all ways of adding a
key position with these properties to the alignment. The numbers of insertions
between it and the neighbouring key position are preserved relatively rather
than absolutely: in other words, they may be shifted by a constant offset. The
alignment score for each way of adding such a key position is calculated, and
one of them is chosen randomly with probabilities proportional to their scores
raised to the power of 1/T .

Changing the number of key positions

Overview

None of the moves described so far changes the number of key positions in the
motif, yet we wish to optimise this also. This is accomplished by two modifi-
cations to the column sampling procedure. Firstly, in the removal step, a key
position is chosen and its properties are recorded as usual, but it is not always
removed. This allows the number of key positions to grow. The decision to
remove or not is made stochastically, with probability q of removal. The correct
value for q is discussed below. Secondly, in the addition step, a key position is
not always added. This allows the number of key positions to decrease.
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Modified Addition Step

Suppose that a key position was removed, and that there are no other key
positions with the same properties. If we do not add a key position, there
will be no way to reverse the move, in violation of detailed balance. Thus, a
key position must always be added, unless there is another key position in the
alignment with the same properties. One way to think about this is that the
key position to be added can be “absorbed” by a key position with the same
properties. Specifically, GLAM2 counts the number, V , of key positions with
the same properties as the one being added, and adds absorption by each one of
them to the list of alignments that it considers. Finally, as usual, one alignment
is chosen stochastically with probability proportional to the alignment score to
the power of 1/T .

Probability of Removal

The probability q of removal should be chosen carefully to maintain detailed
balance. Consider the probabilities of moving between two alignments X and
Y , where Y has one extra key position compared to X. In the following, VX

is the number of key positions in X with the same properties as the extra key
position in Y .

P (X → Y ) =
1

2
·
1

2
· (1 − q(X)) ·

VX

WX − 1
·

S′(Y )

VX · S′(X) +
∑

Z S′(Z)
(37)

where WX is the number of key positions in X (one of which, either the leftmost
or rightmost, is never selected), S′(X) is the score of X to the power of 1/T ,
and Z sums over all the ways of adding a new key position. The first 1/2 is the
probability of column sampling rather than site sampling; the second 1/2 is the
probability of choosing the direction (left or right); 1 − q(X) is the probability
of not removing the key position; VX/(WX − 1) is the probability of choosing
a key position with the right properties to get to Y ; the final fraction is the
probability of adding a key position in the right location to get to Y . Similarly:

P (Y → X) =
1

2
·
1

2
· q(Y ) ·

1

WY − 1
·

VX · S′(X)

VX · S′(X) +
∑

Z S′(Z)
(38)

Thus, to achieve detailed balance, the following must hold:

1 − q(X)

WX − 1
=

q(Y )

WY − 1
(39)

where WX = WY − 1. This can be satisfied if q is a function of the number of
key positions, W . To simplify things a bit, we express q as a function of the
number of selectable key positions, W ′ = W − 1, recalling that one of the two
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endmost key positions is never selected. Then:

q(W ′ + 1)

W ′ + 1
=

1

W ′
−

q(W ′)

W ′
(40)

⇒
q(W ′)

W ′
= (−1)W ′

−1



q(1) −
W ′

−1
∑

i=1

(−1)i−1

i



 (41)

The summation in Equation (41) generates the Taylor expansion of ln(2) about
1, so the unique solution that prevents q(W ′) from diverging is, rather surpris-
ingly, q(1) = ln(2).

Initialization

At the start of each annealing run, an initial alignment is constructed in the
following manner. The number of key positions is set to an initial value chosen
by the user (default: 20). Starting with an empty alignment, the input sequences
are taken one-by-one, in a random order, and added to the alignment using a
site sampling move with T = 1.

Motif Scanning

Overview

In motif scanning, a sequence database is searched to find new instances of a
previously determined motif. An instance is a sequence segment that has a
high-scoring alignment to the key positions of the motif. In this section, we
first describe the scoring scheme for such alignments. Secondly, we describe an
algorithm to scan a motif against one sequence, and find a guaranteed maximal-
scoring alignment. To scan a database, this algorithm can simply be repeated for
each sequence. However, some sequences may contain multiple motif instances:
we do not want to be limited to one hit per sequence. Thus, we also describe
a method for finding suboptimal matches. The techniques used in this section
are all standard [3].

Scoring Scheme

Motif Model

The scoring scheme derives from the statistical motif model described earlier.
To recap, the model has position-specific residue probabilities: θi, deletion prob-
abilities: φ, and insertion probabilities: ψx(1−ψ). For scanning, these probabil-
ities are estimated from the predetermined motif, and from prior expectations.
Specifically, the posterior mean estimators [3] are used.

We are given a motif with W key positions and s aligned sequences. The
kth key position has mk residues and is deleted dk times, so that mk + dk = s.
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There are rk insertions between key positions k and k + 1. ckX is the count
of residue type X in key position k, so that mk =

∑A
X=1 ckX . Using the same

Beta and Dirichlet mixture priors as above, the posterior mean estimators are:

φ̂(k) =
dk + D

s + D + E
(42)

ψ̂(k) =
rk + I

rk + s + I + J
(43)

θ̂(k,X) =

C
∑

j=1

vkj
ckX + αjX

mk + Aj
(44)

where:

vkj =

wj ·Γ(Aj)
Γ(mk+Aj)

∏A
i=1

Γ(cki+αji)
Γ(αji)

∑C
j=1

wj ·Γ(Aj)
Γ(mk+Aj)

∏A
i=1

Γ(cki+αji)
Γ(αji)

(45)

Background Model

We evaluate a potential motif instance by comparing the motif model to a
background model. As before, the background model is that the residues occur
randomly and independently, with probabilities pi. The pi values can be ad-
justed by the user. By default, For proteins, the abundances of Robinson and
Robinson are used [10], and for nucleotides, uniform abundances are used.

Score Parameters

The score of a sequence segment aligned to a motif is a log likelihood ratio: the
likelihood of the aligned segment given the motif model, versus the likelihood
of the segment given the background model. Thus, the score for deleting key
position k is:

δ(k) = log2

[

φ̂(k)
]

(46)

The score for aligning a residue of type X with key position k is:

µ(k,X) = log2

[

(1 − φ̂(k)) · θ̂(k,X) / pX

]

(47)

The score for inserting x residues between k and k +1 is ι1(k)+ ι2(k) ·x, where:

ι1(k) = log2

[

1 − ψ̂(k)
]

(48)

ι2(k) = log2

[

ψ̂(k)
]

(49)

Search Algorithm

Overview

We wish to find a maximal-scoring alignment of the motif’s key positions with
a segment of the query sequence. This is a standard alignment problem, which
can be solved by dynamic programming followed by a traceback.
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Dynamic Programming

Dynamic programming calculates values M(i, j): the score of the highest-scoring
alignment ending at the ith key position in the motif and the jth residue in the
sequence. The calculation is made slightly simpler by constructing intermediate
values N(i, j). In the following, L is the length of the sequence. Boundary cases:

N(0, j) = 0 (0 ≤ j ≤ L) (50)

M(i, 0) = δ(i) + N(i − 1, 0) (1 ≤ i ≤ W ) (51)

N(i, 0) = ι1(i) + M(i, 0) (1 ≤ i < W ) (52)

Main cases:

M(i, j) = max

{

µ(i,Xj) + N(i − 1, j − 1)
δ(i) + N(i − 1, j)

(

1 ≤ j ≤ L
1 ≤ i ≤ W

)

(53)

N(i, j) = max

{

ι1(i) + M(i, j)
ι2(i) + N(i, j − 1)

(

1 ≤ j ≤ L
1 ≤ i < W

)

(54)

Traceback

In this section, the values M(i, j) and N(i, j) are used to find a highest-scoring
alignment. First, a highest-scoring alignment endpoint is found:

j =
L

arg max
j=0

M(W, j) (55)

In case of ties, the lower value of j is arbitrarily chosen.
Having chosen the endpoint j, the alignment is determined by iterating the

following steps, with i initially equal to W . Firstly, if δ(i)+N(i−1, j) is greater
than µ(i,Xj)+N(i− 1, j − 1), key position i is deleted, else residue j is aligned
to key position i. Then i is decremented, and unless deletion was chosen, j is
decremented. Secondly, if ι2(i) + N(i, j − 1) is greater than ι1(i) + M(i, j), a
residue is inserted between key positions i and i+1, and j is decremented. This
is repeated until ι2(i) + N(i, j − 1) ceases to be greater than ι1(i) + M(i, j).
These steps are repeated until i or j reaches zero.

Suboptimal Matches

Overview

The previous algorithm finds one highest-scoring alignment of a motif to a se-
quence, but we wish to be able to find more than one alignment. The usual
definitional problem arises: there are a vast number of possible alignments, and
the second-highest scoring one is likely to be a minor variant of the highest-
scoring one, but we are not interested in such variants. Thus, we adopt the
criterion of Waterman and Eggert [12]: subsequent alignments must not pair
residues and key positions that have been paired in any previous alignment.
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Method

To satisfy this criterion, we maintain a matrix F (i, j) that indicates forbidden
pairs. F (i, j) is initialized to all zeros. During the traceback, whenever residue j
is aligned to key position i, F (i, j) is set to 1. After the traceback, the M and N
matrices are recalculated, with matches forbidden whenever F (i, j) = 1. Only
small regions of M and N near the newly forbidden cells need to be recalculated
[12]. Finally, a new traceback is performed, avoiding old forbidden matches, and
marking new forbidden matches. These recalculation and traceback steps can
be repeated as often as desired.

Stopping Criteria

Retrieval of suboptimal matches from one sequence stops when either of two
conditions are met. Firstly, if an alignment with no matches (only deletions
and insertions) is found, it is discarded and the procedure is terminated. Such
an alignment does not add any forbidden pairings, so it necessarily terminates
the Waterman-Eggert procedure. Secondly, the total number of database hits
is limited to some value n chosen by the user. If n hits have already been
found, and the new alignment has a score no greater than any of these, it is
discarded and the procedure is terminated. The database hits are stored in a
heap, which is a kind of partially-sorted array that allows efficient removal of
the lowest-scoring hit and insertion of new hits.
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